使用深神经网络算法分析振动数据是检测早期旋转机械损害的有效方法。但是,这些方法的黑框方法通常无法提供令人满意的解决方案,因为人类无法理解分类的原因。因此,这项工作调查了可解释的AI(XAI)算法在基于振动状态监测的卷积神经网络中的应用。为此,将各种XAI算法应用于基于傅立叶变换以及振动信号的顺序分析的分类。将结果可视化,是每分钟旋转(rpm)的函数,频率-RPM映射和订单RPM映射的形状。这允许评估取决于旋转速度和恒定频率的功能的显着性。为了比较XAI方法的解释能力,首先使用具有已知类别特异性特征的合成数据集进行了研究。然后,使用了针对电动机上基于振动的不平衡分类的现实世界数据集,该数据集以广泛的旋转速度运行。特别重点放在数据的可变周期性的一致性上,这转化为现实世界机器的不同旋转速度。这项工作旨在显示此用例的方法的不同优势和劣势:Gradcam,LRP和Lime具有新的扰动策略。
translated by 谷歌翻译
This study focuses on improving the optical character recognition (OCR) data for panels in the COMICS dataset, the largest dataset containing text and images from comic books. To do this, we developed a pipeline for OCR processing and labeling of comic books and created the first text detection and recognition datasets for western comics, called "COMICS Text+: Detection" and "COMICS Text+: Recognition". We evaluated the performance of state-of-the-art text detection and recognition models on these datasets and found significant improvement in word accuracy and normalized edit distance compared to the text in COMICS. We also created a new dataset called "COMICS Text+", which contains the extracted text from the textboxes in the COMICS dataset. Using the improved text data of COMICS Text+ in the comics processing model from resulted in state-of-the-art performance on cloze-style tasks without changing the model architecture. The COMICS Text+ dataset can be a valuable resource for researchers working on tasks including text detection, recognition, and high-level processing of comics, such as narrative understanding, character relations, and story generation. All the data and inference instructions can be accessed in https://github.com/gsoykan/comics_text_plus.
translated by 谷歌翻译
Diffractive optical networks provide rich opportunities for visual computing tasks since the spatial information of a scene can be directly accessed by a diffractive processor without requiring any digital pre-processing steps. Here we present data class-specific transformations all-optically performed between the input and output fields-of-view (FOVs) of a diffractive network. The visual information of the objects is encoded into the amplitude (A), phase (P), or intensity (I) of the optical field at the input, which is all-optically processed by a data class-specific diffractive network. At the output, an image sensor-array directly measures the transformed patterns, all-optically encrypted using the transformation matrices pre-assigned to different data classes, i.e., a separate matrix for each data class. The original input images can be recovered by applying the correct decryption key (the inverse transformation) corresponding to the matching data class, while applying any other key will lead to loss of information. The class-specificity of these all-optical diffractive transformations creates opportunities where different keys can be distributed to different users; each user can only decode the acquired images of only one data class, serving multiple users in an all-optically encrypted manner. We numerically demonstrated all-optical class-specific transformations covering A-->A, I-->I, and P-->I transformations using various image datasets. We also experimentally validated the feasibility of this framework by fabricating a class-specific I-->I transformation diffractive network using two-photon polymerization and successfully tested it at 1550 nm wavelength. Data class-specific all-optical transformations provide a fast and energy-efficient method for image and data encryption, enhancing data security and privacy.
translated by 谷歌翻译
Recent advances in distributed artificial intelligence (AI) have led to tremendous breakthroughs in various communication services, from fault-tolerant factory automation to smart cities. When distributed learning is run over a set of wirelessly connected devices, random channel fluctuations and the incumbent services running on the same network impact the performance of both distributed learning and the coexisting service. In this paper, we investigate a mixed service scenario where distributed AI workflow and ultra-reliable low latency communication (URLLC) services run concurrently over a network. Consequently, we propose a risk sensitivity-based formulation for device selection to minimize the AI training delays during its convergence period while ensuring that the operational requirements of the URLLC service are met. To address this challenging coexistence problem, we transform it into a deep reinforcement learning problem and address it via a framework based on soft actor-critic algorithm. We evaluate our solution with a realistic and 3GPP-compliant simulator for factory automation use cases. Our simulation results confirm that our solution can significantly decrease the training delay of the distributed AI service while keeping the URLLC availability above its required threshold and close to the scenario where URLLC solely consumes all network resources.
translated by 谷歌翻译
Multispectral imaging has been used for numerous applications in e.g., environmental monitoring, aerospace, defense, and biomedicine. Here, we present a diffractive optical network-based multispectral imaging system trained using deep learning to create a virtual spectral filter array at the output image field-of-view. This diffractive multispectral imager performs spatially-coherent imaging over a large spectrum, and at the same time, routes a pre-determined set of spectral channels onto an array of pixels at the output plane, converting a monochrome focal plane array or image sensor into a multispectral imaging device without any spectral filters or image recovery algorithms. Furthermore, the spectral responsivity of this diffractive multispectral imager is not sensitive to input polarization states. Through numerical simulations, we present different diffractive network designs that achieve snapshot multispectral imaging with 4, 9 and 16 unique spectral bands within the visible spectrum, based on passive spatially-structured diffractive surfaces, with a compact design that axially spans ~72 times the mean wavelength of the spectral band of interest. Moreover, we experimentally demonstrate a diffractive multispectral imager based on a 3D-printed diffractive network that creates at its output image plane a spatially-repeating virtual spectral filter array with 2x2=4 unique bands at terahertz spectrum. Due to their compact form factor and computation-free, power-efficient and polarization-insensitive forward operation, diffractive multispectral imagers can be transformative for various imaging and sensing applications and be used at different parts of the electromagnetic spectrum where high-density and wide-area multispectral pixel arrays are not widely available.
translated by 谷歌翻译
Privacy-preserving inference via edge or encrypted computing paradigms encourages users of machine learning services to confidentially run a model on their personal data for a target task and only share the model's outputs with the service provider; e.g., to activate further services. Nevertheless, despite all confidentiality efforts, we show that a ''vicious'' service provider can approximately reconstruct its users' personal data by observing only the model's outputs, while keeping the target utility of the model very close to that of a ''honest'' service provider. We show the possibility of jointly training a target model (to be run at users' side) and an attack model for data reconstruction (to be secretly used at server's side). We introduce the ''reconstruction risk'': a new measure for assessing the quality of reconstructed data that better captures the privacy risk of such attacks. Experimental results on 6 benchmark datasets show that for low-complexity data types, or for tasks with larger number of classes, a user's personal data can be approximately reconstructed from the outputs of a single target inference task. We propose a potential defense mechanism that helps to distinguish vicious vs. honest classifiers at inference time. We conclude this paper by discussing current challenges and open directions for future studies. We open-source our code and results, as a benchmark for future work.
translated by 谷歌翻译
Federated learning (FL) is a promising approach to enable the future Internet of vehicles consisting of intelligent connected vehicles (ICVs) with powerful sensing, computing and communication capabilities. We consider a base station (BS) coordinating nearby ICVs to train a neural network in a collaborative yet distributed manner, in order to limit data traffic and privacy leakage. However, due to the mobility of vehicles, the connections between the BS and ICVs are short-lived, which affects the resource utilization of ICVs, and thus, the convergence speed of the training process. In this paper, we propose an accelerated FL-ICV framework, by optimizing the duration of each training round and the number of local iterations, for better convergence performance of FL. We propose a mobility-aware optimization algorithm called MOB-FL, which aims at maximizing the resource utilization of ICVs under short-lived wireless connections, so as to increase the convergence speed. Simulation results based on the beam selection and the trajectory prediction tasks verify the effectiveness of the proposed solution.
translated by 谷歌翻译
This technical report presents GPS++, the first-place solution to the Open Graph Benchmark Large-Scale Challenge (OGB-LSC 2022) for the PCQM4Mv2 molecular property prediction task. Our approach implements several key principles from the prior literature. At its core our GPS++ method is a hybrid MPNN/Transformer model that incorporates 3D atom positions and an auxiliary denoising task. The effectiveness of GPS++ is demonstrated by achieving 0.0719 mean absolute error on the independent test-challenge PCQM4Mv2 split. Thanks to Graphcore IPU acceleration, GPS++ scales to deep architectures (16 layers), training at 3 minutes per epoch, and large ensemble (112 models), completing the final predictions in 1 hour 32 minutes, well under the 4 hour inference budget allocated. Our implementation is publicly available at: https://github.com/graphcore/ogb-lsc-pcqm4mv2.
translated by 谷歌翻译
Training facial emotion recognition models requires large sets of data and costly annotation processes. To alleviate this problem, we developed a gamified method of acquiring annotated facial emotion data without an explicit labeling effort by humans. The game, which we named Facegame, challenges the players to imitate a displayed image of a face that portrays a particular basic emotion. Every round played by the player creates new data that consists of a set of facial features and landmarks, already annotated with the emotion label of the target facial expression. Such an approach effectively creates a robust, sustainable, and continuous machine learning training process. We evaluated Facegame with an experiment that revealed several contributions to the field of affective computing. First, the gamified data collection approach allowed us to access a rich variation of facial expressions of each basic emotion due to the natural variations in the players' facial expressions and their expressive abilities. We report improved accuracy when the collected data were used to enrich well-known in-the-wild facial emotion datasets and consecutively used for training facial emotion recognition models. Second, the natural language prescription method used by the Facegame constitutes a novel approach for interpretable explainability that can be applied to any facial emotion recognition model. Finally, we observed significant improvements in the facial emotion perception and expression skills of the players through repeated game play.
translated by 谷歌翻译
在本文中,我们将Wiener-Ito混乱分解扩展到扩散过程的类别,其漂移和扩散系数具有线性生长。通过省略混乱扩展中的正交性,我们能够证明,对于[1,\ infty)$中的$ p \ in [1,\ infty)$的每个$ p $积分功能都可以表示为基础过程的迭代积分的总和。使用此扩展的截断和(可能是随机的)神经网络的截断总和,在机器学习设置中学习了参数,我们证明,每个财务衍生物都可以在$ l^p $ sense中任意地近似。此外,可以以封闭形式计算近似财务导数的对冲策略。
translated by 谷歌翻译